
Components in CPUs

Component Name Description

Memory/RAM Random Access Memory which computers use to store
running systems software and applications software.

ALU (Arithmetic Logic Unit) Executes instructions by performing mathematical and
logical operations.

Bus A bidirectional or unidirectional channel of
communication between components.

Register Stores a tiny amount of data next to the CPU.

Clock Speed Measure of CPU clock cycles (instructions per second )
in MHz or GHz. If a clock speed is too high, instructions
won't complete before the next starts. Clock speed can
be increased in a process known as overclocking,
however the CPU could get too hot.

Core A logical unit of processing with its own ALU and
registers.

Cache A type of storage which is very close to the CPU and
stores a small amount of data.

Registers
Store a tiny amount of data next to the CPU. Unlike RAM or cache, registers aren’t designed
to store large blocks of memory instead, only used for keeping data for CPU operations.

Register Name Description

PC (Program Counter) Contains the address in memory of the
current instruction in the running program at
the time. Increments after an instruction has
finished executing.

ACC (Accumulator) Register where results from arithmetic and
logical calculations are stored after they are
calculated.

MAR (Memory Address Register) CPU register that stores the memory
address from which data will be fetched
from RAM to the CPU.

MDR (Memory Data Register) Register that stores data that’s being
moved into or just moved out of RAM.

CIR (Current Instruction Register) Stores the current instruction which is
executing or being executed. When the
instruction is finished, the program counter



increments and the next instruction is
loaded from RAM over the data bus.

Communicating Between Components in a Computer
A bus is a channel of communication between components such as the CPU, GPU or RAM.
This can be for the CPU to retrieve data from RAM, or could be the CPU controlling the GPU
or a hard drive.

Bus Name Description

Data Bus The bus where data flows between RAM and
CPU.

Address Bus Sends addresses from the CPU to RAM.

Control Bus Sends instructions and data to and from devices
allowing them to communicate and be controlled.

Channels are a simple way of communicating between CPU cores. This allows each core to
communicate and work together. In a multi-core CPU, each core has a channel to every
other CPU, so in a dual core CPU there is 1 channel, but in a quad core CPU, there are 5
channels.



CISC vs RISC

CPUs use instruction sets to allow programs to control them, do computational operations
and manipulate data in RAM.

Complex Instruction Set Computing Reduced Instruction Set Computing

Usually used in desktop computer and
high-end machines (however modern CPUs
convert CISC into RISC at runtime, as they
are RISC underneath).

Used in laptops, computers, mobile phones
and portable devices.

More complex set of instructions. Smaller (reduced) set of instructions and
thus simpler.

More complex hardware. Less complex hardware.

Instructions can take multiple cycles to
finish execution.

Instructions take only one cycle to execute.

Physically larger in size and requires more
silicon, thus more expensive.

Smaller in size as less complex and
cheaper.

Can use pipelining to optimise instructions. No pipelining.

More intensive tasks will do better with
CISC.

Runs at a lower clock speed, but can
perform simpler tasks more quickly.

Uses a lot more power. Uses less power (ideal for mobile). Can go



into a power-saving mode.

Higher clock speed. Lower clock speed, however can run much
lower if needing to save power.

Smaller binaries. Larger binaries.

Examples: x86 and variants Examples: MIPS, PowerPC, ARM

Cores, Threading and Parallel Processing
By processing data in parallel, large operations
can be finished much faster. For example when
data mining Twitter, each core can be used to
process four separate streams of tweets. Four
tweets can be processed at the same time rather
than just one which means efficiency is
increased.

Threads are an abstraction on top of cores.
Programs can simply create threads and the
operating system can schedule hundreds of
threads onto separate CPUs. It can also balance
usage so each core is used to it's maximum potential.

Some Intel CPUs use hyper-threading which means that each core has two threads and the
CPU simply balances these out.

Programs have to be specifically developed to specifically use each core. Because of the
complexities of writing code to work in a multithreaded environment (such as locking, globals
and cross-core communication), only programs that require high performance, such as
Adobe Photoshop or games use multiple threads.

I/O such as writing to disk or network operations, so it’s common to create another thread
specifically for accessing data or downloading an image and then a program can do other
operations while waiting for the operation to complete. This is known as a callback in
software engineering.

How Data Flows in a CPU
Fetch, decode execute is the process that happens on every CPU cycle. An instruction is
fetched from RAM and then a component decodes the code into a logical operation which
can be executed by the ALU.

When data is retrieved from memory, the CPU first checks if the data is contained in L1
cache and continues onto L2 and L3 cache on cache miss. If data isn’t stored in cache, the



CPU will retrieve it directly from RAM. Frequently accessed or ‘hot’ data will be stored in
CPU cache with colder data staying in RAM.

When a CPU begins executing a program, the compiled
program blob is loaded into memory. The address of the first
byte of the program is then loaded into the PC over the data
bus.

Fetch, Decode, Execute Cycle
On each cycle the address of the next byte of the program is
loaded into the PC. The PC’s contents is loaded into the MAR
which is sent to RAM over the address bus. The RAM then
returns the next instruction to the MDR over the data bus. The
MAR’s contents are then loaded into the CIR where the
instructions are decoded into a logical or mathematical
operation. During this whole process the control unit
orchestrates the moving of data around the various registers
and busses.

At the start of the execution phase, if the instruction is to jump
to another line, this is immediately loaded into the PC and the
cycle starts again. Otherwise the instruction is executed and
it’s contents are loaded into the ACC or sent back to RAM via
the MDR, MAR and busses.

Programming with Assembly
The lowest level representation of a program. ASM is a direct one-to-one representation of
machine code, but in human readable form. Higher level languages such as C or C++
compile down to assembly. ASM programs are architecture specific such as CISC and RISC
and can only run on CPUs with the instruction set they were programmed for.



Although you can write programs in Assembly, it’s extremely rare outside embedded
systems like microcontrollers where extreme performance is required. Programs written in
some higher level languages, such as C (which is still low-level) are compiled. When
compiling a program the output binary blob is architecture specific and has to be compiled
separately for each platform, such as x86 and ARM.

Platforms such as Java compile programs to bytecode, which runs in a JVM (Java Virtual
Machine). JVM bytecode is like x86 and ARM machine code however it’s Java specific (Java
being an architecture unto itself). This means that any compiled Java program can run on
any machine with a JVM.

Von Neumann, Harvard and Contemporary Architectures

The Von Neumann Architecture,
created by John Neumann is a simple
architecture which has single control
unit can sequentially work through a
stream of instructions.

There is a single data bus and single
storage unit, where both instructions
and data are stored.

The Von Neumann Bottleneck is an issue posed by the architecture due to instructions and
data not being able to sent and received in parallel as a single data bus can only send data
sequentially in one way at a time.



The Harvard Architecture is an
improvement on the Von Neumann
Architecture due to having two data
busses and two memory units, one
for data and one for instructions,
meaning instructions can be fetched
whilst data is being sent or received
from storage.

Contemporary Architecture uses a
unified model of the Harvard
architecture, with multiple memory
units as instruction and data caches,
but a unified address.

All architectures support multiple cores that are all linked using data busses, which connect
all CPU caches, however these architectures can also work with just a single core.


